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1. Introduction and Background

The objective of the research conducted in this project is to develop a
methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using
statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a
methodology can contribute to answering the following research questions:

Over a representative sampling of ASMD databases, can statistical error analysis
techniques be accurately learned and replicated by ANN modeling techniques? This
representative ASMD sample should include numerous airports and a variety of terrain
characterizations.

* Is it possible to identify and automate the recognition of patterns of error related

to geographical features?

* Do such patterns of error relate to specific geographical features, such as

elevation or terrain slope?

* Isit possible to combine the errors in small regions into an error prediction for a

larger region?

* What are the data density reduction implications of this work?

ASMD may be used as the source of terrain data for a synthetic visual system to be
used in the cockpit of aircraft when visual reference to ground features is not possible
during conditions of marginal weather or reduced visibility. In this research, United
States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as
the benchmark.  Artificial Neural Networks (ANNs) have been used and tested as
alternate methods in place of the statistical methods in similar problems. They often
perform better in pattern recognition, prediction and classification and categorization
problems. Many studies show that when the data is complex and noisy, the accuracy of
ANN models is generally higher than those of comparable traditional methods.

In preliminary research, data was gathered for five airports that were used for
training of ANN models. The data encompassed a 60 by 60 statute mile square region of
interest (ROI) around an airport composed of geographic point pairs of elevation postings

from both the ASMD and USGS databases. Before the development of ANN models, an



error value was computed for each point for the entire airport ROI using the following

formula:
ASMD error = USGS elevation - ASMD elevation
With the computed errors, an average error over the entire ROI was calculated as used as

an evaluating metric. The errors ranged from six meters to forty-two meters as shown

below:

Asheville Regional (NC) =42.91 meter
McClellan—Palomar (CA) =30.07 meter
Delta Municipal (UT) =16.31 meter

Scappoose Industrial Airpark (OR) =11.73 meter
Denver (CO) = 6.34 meter

It is claimed that ninety percent of the elevations in the ASMD are within thirty meters of
the actual elevation. According to the average ASMD errors, four of the five airports fall
within thirty meters. These predetermined errors were used for comparison purposes in
the development of ANN models. The project was conducted over two years and
includes three phases. The accomplishments and the summary of results and findings are

described in the following sections.

2. Project Phase | — August 2000 — October 2000

The following objectives have been accomplished during Phase 1 of the

project in the first year:

= Literature search on the use of statistical models and ANN models

» Investigate error in geographical databases related to geographical characteristics

The literature review included ANNs associated with error and error modeling in

geographical databases, as well as the classical ANN application areas. The goal was to



investigate different types of ANN algorithms and their appropriate application areas. A
number of studies indicate that Backpropagation, Learning Vector Quantization, Self
Organizing Map, Reinforcement, Hopfield, and Modular Network models may be best
suited for this research in determining the error in geographical terrain databases. It was
also concluded that Gaussian initialization may be the best way to handle the
complex/noisy data contained in these databases. As a result of the literature review,
these six ANN algorithms have been investigated for use in testing the air{mrt data from

the preliminary research.

3. Project Phase Il - November 2000 — July 2001

The following objectives were achieved during Phase II in the first year:

» Investigate ANN application development software packages and identify one
that is suitable for this project

»  Generate data files for the five airports for training and testing of the ANN models

= Explore various ANN algorithms to best determine the error in the ASMD

database

After the initial survey of ANN development packages, two software papkages were
considered: NeuroSolutions® and NeuralWorks Professional IVPLUS. It was decided
that NeuralWorks Professional II/Plus included features that were appropriate for the

needs of this project.

3.1 ANN Data Generation

For each of the five airports, one training file and one testing file were generated.
Each of the training and testing files included two input patterns and one output pattern.
Input pattern-1 included the elevation values from the ASMD database, and input pattern-
2 included the elevation values from the USGS database. The output pattern was the
predetermined error between the two elevations from the ASMD and USGS databases.



The ASMD and USGS elevation values (input values) were normalized between “0”
and “1” when sigmoid transfer function was used during training. The formula below

was used for normalization:

1 .
Y = ——————x(elevation — min)
(max— min)
where y = scaled value
max = maximum value of the related data

min = minimum value of the related data

The software automatically normalized the data between “-1” and “+1” when the TanH
transfer function was used during training. Furthermore, the output values were coded as

binary based on the following assumption criteria:

a) If USGS elevation > ASMD elevation, then the output value (error) is coded as

“1”, indicating an alarm or risk error in the ASMD elevation.

b) If USGS elevation < ASMD elevation, then the output value (error) is coded as

“0”, indicating no alarm or no risk in the ASMD elevation.

¢) IfUSGS elevation = ASMD elevation, then the output (error) is coded as “07,

indicating no alarm or no risk in the ASMD elevation.

3.2. Development of ANN Models

Based on the literature review results, the following ANN algorithms have been

selected and investigated to design and develop ANN models to determine the ASMD

CITor:

= Backpropagation



* Learning Vector Quantization
= Self Organizing Map

» Reinforcement

= Hopfield

* Modular

There were approximately 100 ANN models developed, trained and tested using
the above six ANN algorithms. The Modular ANN models yielded the best results. With
these results, it was decided to further investigate and enhance the Modular Networks
model in order to improve the results achieved in error recognition. Modular Neural
Networks consist of a group of networks (referred to as “local experts”) competing to
learn different aspects of a problem. A gating network controls the competition and
learns to assign different regions of the data space to different local expert networks. The
learning rule tends to encourage competition among local experts for different regions of
the input space.

The best (optimal) Modular ANN model, among the 100 models, had one input
layer (with two processing elements), one-hidden layer (with one processing element),
and one output layer (with one processing element). For gating networks, one hidden
layer with four processing elements and one output layer with three processing elements
were used in the model. Various ANNs were trained and tested with more than one
hidden layer. However, the results showed that one hidden layer ANN models performed
better than the others with two or more. Momentum values were varied between 0.4 and
0.9, and ANN models with 0.7 momentum yielded best results. Similarly, those models
with the Extended-Delta-Bar-Delta Learning Rule resulted in better performance.

Although the literature suggests that the TanH transfer function may be the best in
real world applications, the number of ANN models developed in this research showed
that the sigmoid transfer function yielded better results for this problem domain. For
initialization and noise generation, a Gaussian Distribution was used. Although the
software can automatically set the epoch equal to the number of vectors in the training

file, the epoch was manually set up to 500. In order to set the error convergence criteria,



the software’s RMS instrument was used and a threshold value of 0.001 was selected for

convergence criteria. Finally, all the layers within the model were interconnected.

3.3 Results and Conclusions

The testing results for each of the five airports are shown in Tables 1, 2, and 3
along with the predetermined average error. These testing results demonstrate that
Modular Network models are viable in determining the error in the ASMD database. The
predetermined average error for each airport was used for comparison with the average

error predicted by the ANN model.

Table 1. Testing Results-Asheville and Delta Airports

Asheville Regional Airport Delta Municipal Airport
Number of Iterations: 7500 Number of Iterations: 7500
Transfer Function: Sigmoid Transfer Function: Sigmoid
Learn Rule: Extended-Delta-Bar-Delta Learn Rule: Extended-Delta-Bar-Delta
Momentum: 0.7 Momentum: 0.7
RMS: 0.0857 RMS: 0.0583
Actual Output Average: 40.77491 Actual output average: 15.16636
Desired Output Average: 37.89625 Desired output average: 10.5373
Predetermined Error: 42.91 meter Predetermined Error: 16.31 meter




Table 2. Testing Results-Denver and Scappoose Airports

Denver International Airport

Scappoose Industrial Airpark

Number of Iterations: 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta
Momentum: 0.7

RMS: 0.0812

Actual Output Average: 8.44611
Desired Output Average: 4.86944

Predetermined Error: 6.34 meter

Number of Iterations: 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta
Momentum: 0.7

RMS: 0.0239

Actual output average: 9.05

Desired output average: 10.03

Predetermined Error: 11.73 meter

Table 3. Testing Results-McClellan-Palomar Airport

McClellan-Palomar Airport

Momentum: 0.7
RMS: 0.0867

Number of Iterations: 7500
Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta

Actual Output Average: 39.389
Desired Output Average: 32.078

Predetermined Error: 30.07 meter




4. Phase lll August 2001-July 2002

During the first year, an Artificial Neural Network (ANN) model was developed and
tested with data for five airports. This Modular type ANN had one input layer, one
hidden layer and one output layer. It was able to predict an average error for geographic
point elevation pairs for a region of interest around an airport based on the data modeling
assumptions of:

e IfUSGS elevation > ASMD elevation, then the output value (error) is coded
as “1”, indicating a risky error in the ASMD elevation.

e IfUSGS elevation < ASMD elevation, then the output value (error) is coded
as “0”, indicating no alarm or no risk in the ASMD elevation.

e IfUSGS elevation = ASMD elevation, then the output (error) is coded as “0”,
indicating no alarm or no risk in the ASMD elevation.

Based on the results achieved in the first year of the project, the investigators
continued to enhance the models and test more airports in order to ensure validity of the
models. In the second year, the project objectives were:

¢ Generate more data files for model development and testing

e Design, development and analysis of statistical model

e Design, development and analysis of ANN Model(s)

e Refinements to the selected best models

o Statistical analysis of the results to determine best ANN model(s) and/or

statistical models

4.1 Airport Data File Acquisition

In the accomplishment of the objectives for Phase III, it was necessary to gather more
geographic data for a newly selected set of airports. The five original airports chosen
were picked to gather a variety of East Coast, Midwest and West Coast airports. The
next set of airports was chosen to try and capture a varied range of terrain elevation
characteristics. A good spectrum of geographic features was sought. The aim is to
investigate geography from coastlines to mountain ridges, valleys to high elevations and

peaks, and varying degrees of sloping terrain to large differences in elevation within a



selected region of interest covering a range of high positive elevation values to negative
values. In the selection of these next airports, Sectional Aeronautical Charts published by
the U.S Department of Transportation, Federal Aviation Administration and the National
Aeronautical Charting Office were used to get a preliminary look at the terrain and help
map out the region of interest before moving on to replicate it with computer
applications. The procedures for the acquisition of data were modified slightly from the
prior phase of research due to enhancements in utilized computer applicatiops. The
methodology was basically the same but there are some key details that shovald be noted
to ensure accurate data acquisition and reduce rework of a very labor intensive and time
consuming process. A checklist of procedures, supporting developed documents and
necessary references are attached in Appendix 1.

The next set of airports contained three samples. They were Lake Havasu City
Airport, John Wayne-Orange County Airport and Palm Springs Regional Airport. These
airport data files covered a ROI 60 by 60 square statute miles around an airﬁort reference
point (ARP) and contained geographic latitude, longitude pairs of ASMD elevations to
their associated USGS elevations. The preferred spacing of the elevation postings for the
construction of the USGS ROI was 30 meters but some of the airports had only 10 meter
spacing available for certain 7.5’ x 7.5’ Digital Elevation Models (DEMs) that composed
the selected area. The drawback to this spacing variation in USGS source data was that a
large data density of points had to be searched in matching corresponding geographic
points. This added to processing time in the construction of sample files and had a
definite impact on storage of the preprocessed files and on the amount of processing runs
necessary for building the final sample. The USGS file of the entire ROI often had to be
partitioned into smaller elements to stay within the bounds of the statistical grror analysis

program limitations.

4.2 Modular ANN Model Testing for New Airports

The three new airport data files were formatted and then testing files were developed for
processing with the Modular ANN model. The testing results that are presented in Table

4 and Table 5 demonstrate this models’ accuracy.
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JOHN WAYNE-ORANGE COUNTY

LAKE HAVASU CITY

Number of iterations: 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta
Momentum:0. 7

RMS: 0.0442

Actual Output Average: 21.80

Desired Output Average: 19.1835

Predetermined Error: 23.96

Number of iterations: 7500

Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta
Momentum:0. 7

RMS: 0.0496

Actual Output Average: 32.87

Desired Output Average: 23.7240

Predetermined Error: 23.51

Table 4.Testing results-John Wayne and Lake Havasu Airports

PALM SPRINGS REGIONAL

Momentum:0. 7

RMS: 0.0570

Number of iterations: 7500
Transfer Function: Sigmoid

Learn Rule: Extended-Delta-Bar-Delta

Actual Output Average: 63.97
Desired Output Average: 67.0852

Predetermined Error: 57.60

Table 5.Testing results-Palm Springs Airport
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4.3.New Data Modeling Assumption

National Imagery and Mapping Agency's (NIMA) Digital Terrain Elevation Data 1
(DTEDI) files serves as the source data for the ASMD models. The data vertical
accuracy objective of this DTED] is stated by NIMA as +- 30 Meters at 90% linear error
(LE). The full resolution 3 arc second DTED have a vertical accuracy of + 30 meters LE
at the 90% confidence level. If the error distribution is assumed to be Gaussian with a
mean of zero, the statistical standard deviation of the errors is equivalent to the root mean
square error (RMSE). Under those assumptions, vertical accuracy expressed as + 30
meters linear error at 90% can also be described as an RMSE of 18 meters. Concerning
the Airport Safety Model (ASM), which is based on this data, no greater accuracy is

implied or should be assumed.

Absolute vertical accuracy (in meters):
Data source RMSE LE at 90%
DTED 18 *+30
It is claimed that ninety percent of the elevations in ASMD are within thirty meters of
the actual real world elevation. In this project, USGS data is used as a more accurate
baseline standard for comparison for actual real world elevations. USGS source data was
selected due to its unclassified availability as well as a higher resolution and accuracy
claims when compared to DTED1. The following USGS vertical elevation accuracy
statement supports this, “For a 7.5 minute DEM derived from a photogrammetric source,

ninety percent must have a RMSE of seven meters or better and ten percent are in the

eight to fifteen meter range” (Fact Sheet102-96). Based on these accuracy claims, USGS

12



vertical accuracy (7 m RMSE) does appear to have a higher vertical accuracy standard

than the ASMD/DTED1 vertical accuracy (18 m RMSE).

Using USGS as an elevation data standard or baseline, the ASMD error (the USGS

elevation minus ASMD elevation) should fall within the + 30-meter range to reach a

conclusion that this is an accurate ASMD elevation point. Due to aircraft safety

considerations, our analysis needed to identify ASMD elevations that were significantly

greater than the USGS standard points. Therefore, the following data modeling

assumptions are added to our research during the second year.
»  Ifthe ASMD error is greater than +30 meters, it is dangerous and coded as “1”

= Ifthe error is equal to or smaller than +30 meters, it is safe and coded as “0”

4.4 Visualization and Statistical Analysis

For each airport data file sample, analysis was done on the elevation error
between the given ASMD value and the corresponding discovered USGS value.
Histograms of the errors were created and statistical measures of the error are presented
in tabular format. Denver International Airport is used to illustrate the error analysis,
which is presented in Figure 1 and Table 6 with the rest of the airports presented in the

discussion of analysis and results.
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Bin  Frequency  Denver International Airport
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Figure 1. ASMD Error Histogram
Mean Error 6.34311386
Median 5
Mode 4
Standard Deviation 10.2597157
Sample Variance 105.261766
Range 158
Minimum -43
Maximum 115
Count 39398

Table 6. ASMD Error Statistical Measures

Additionally with our assumption of a dangerous value having an ASMD error

greater than +30m, the total number of dangerous and safe elevations and the percentages
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of each were calculated and the data for Denver International is presented in Table 7 with

the rest of the airports presented in the discussion of analysis and results.

# Safe values 38324
# Danger values 1074
Total 39398

% Safe 97.27%

% Dangerous 2.73%

Table 7. Safe/Dangerous ASMD elevation points

To support the statistical aspect and follow-on ANN models, a visualization
component was added to this phase of the project. ARCVIEW® GIS 3.2 from the
Environmental Systems Research Institute Inc. was utilized for this portion of the project
for its ability to display both two dimensional and three dimensional represﬁntations of
geographic data.

Each airport data file acquired during the project was decomposed and formatted
into files of the ASMD elevations, USGS elevations and Error values. Two-dimensional
views and three-dimensional scenes of this data and varying combinations of this data
were built. The 2-dimensional views and 3-dimensional scenes were composed of both
point features and Triangulated Irregular Networks (TINs). The point featu{es were
necessary when there were voids in the data. Some files were not continuous areas due to
a lack of available data within the USGS database or due to bodies of water for which no
DEM data exists. Again, Denver International Airport (DEN) is used to illustrate the
utilization of visualizations and the capabilities of ARCVIEW®. More visualization for
other airports will be included in Appendix 2 and are addressed in a discussion of

analysis and results.
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Denver International Airport

Color Elevation(m)
I 2172-2274
]| 20702172
B | 1968-2070
PR | 1866-1968

1765-1866
1663-1765
1561-1663
1459-1561
1357-1459

2-Dimensional Renresentation of DEN from ASMD

3-Dimensional TIN of DEN from ASMD

Figure 2. Visualizations of DEN from ASMD
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2-D view of ASMD Error v. USGS Elevation

Color Elevation (m) Color Error (m)
L 1 2180-2283 115-50
Eenmren | 2076-2180 50 - 30
B | 1973-2076 ——]| 30--30*
B | 1870-1973 -30 - -43

1766-1870
1663-1766

* Thi :
1560-1663 This color band is transparent to so that values

1456-1560 within limits show through.

1353-1456

Figure 3. Visualizations of DEN from USGS data and ASMD Error data



3-D TIN of ASMD Error

Color Elevation (m)

50-115
30-50
-30-30
-43 - -30

Figure 4. Visualization of ASMD Error data for DEN
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The description, analysis and conclusions are discussed for Denver International and the

other airports in a follow on section.

4.5 New Modeling Assumptions with the Modular ANN Model

The Modular ANN was trained and tested with the new modeling assumptions. The
RMS results are presented in Figure 6. The results varied from 0.3043 to 0.5079 and the
average RMS for the eight airports was 0.4099. This is considered a high RMS result

that lead to the conclusion that another ANN model should be considered.

BAsheville @McCellan 8 Denver ODelta 00 John Wayne @ Palm Springs EScappose HLake Havasu

RMS

Modular
ANN-RMS Results

Figure 6. ANN RMS Results

4.6 Backpropagation Research Summary
The research for another candidate ANN model, which could produce better RMS
results, focused on backpropagation networks for the reasons described below. The

backpropagation-learning paradigm is very popular among neural network researchers
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due to its capability of recognizing large amount of data. These networks are consistent
estimators of binary classifications under similar assumptions. There are potential
advantages of backpropagation identified in the literature for the type of complex data
analysis, which is required in the investigation and error comparisons of large elevation
databases. It is a general-purpose non-linear regression technique, which attempts to
minimize global error. Any multi-dimensional function can in theory be synthesized by a
back-propagation network. It can provide very compact distributed representations of
complex data sets.

Preliminary work has shown that one of the central issues of a back-propagation type
network is to set up an appropriate learning rate. It is important to keep learning rate low,
although it can lead to very slow learning. Therefore, the momentum is used for faster
learning with a low learning rate. Another problematic area is to appropriately set up the
number of hidden layers and processing elements.

Therefore, after reviewing the literature, the following research questions have been
followed to design the optimum architecture.

* How does learning rate and momentum affect ANN learning? What is the best

combination for training for this geographical database?

* How does the hidden layer size affect the learning? What are the optimal

processing elements in the hidden layers for this application?
The investigation of these research questions is now discussed.
4.7. Backpropagation ANN Data Generation
A new set of data was generated for the training and testing processes for each

airport. The ASMD and USGS elevation values were scaled between “0” and “1” for

21



inputs and the output (error) values were coded as binary based on the modeling

assumptions adopted in Phase III:

* Ifthe error is greater than 30 meters, it is coded as “1”

» If'the error is less than or equal to 30 meters, it is coded as “0”

In this study, one training file and one testing file were used for each of 17 airports.
Although testing and training files are randomly selected samples from the data, both
training and testing files are reasonably representative of an entire ASMD database’s area
sample points. Therefore, the training/testing data file sizes are considered independent
for each airport and the hidden elements, layer size, learning rate and momentum are
dependent.

The initial network weights were set up randomly between —10 and 10 and then on-
line training was used for each case. The network was able to update the network weight
after training. In all of the trials, the sigmoid function was used since data was scaled and

coded between “0” and “1”.

4.8 The effect of learning rate and momentum on ANN learning

Figure 7 shows a simple standard Backpropagation network that is developed
with one input layer, two hidden layers and one output layer.

For the experiments the network was built with the input layer having three
processing elements, the hidden layer one processing element and the output layer one
processing element. The Delta learning rule was used for training with the sigmoid

transfer function.
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Input Layer F 4 Output | ayer

Figure 7. Sample Backpropagation network

Experiments were conducted to iteratively determine momentum and learning rate
parameters that would perform well using number of iterations and an acceptable RMS as
measures of performance. When data is coded based on the 0 and 1 criteria, the research
shows, a lower RMS corresponds to better performance. Therefore RMS was chosen as a
critical measure of network performance. The Asheville Regional airport is used in these
experiments. In previous model runs it was the most challenging airport to model and
database elevation errors had the largest elevation error values. The momentum
parameter, which makes the weight distribution properly, was determined first as is
shown in previous backpropagation research studies. The experimental results can be
found in table 8,9, 10 and in figures 8 and 9. For these experiments, RMS convergence
criterion as 0.010 was used for error determination; therefore, the number of iterations
was used to determine best level of parameters. The learning rate was set as 0.9 and the
momentum was changed between 0.3-0.9. The results of this experiment showed that

when the learning rate was fixed at 0.9; the momentum value of 0.6 had a significantly
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influence reducing the number of iterations. Then, the momentum value was set at 0.6

and the learning rate was changed between 0.3-0.9.

Learning rate | 0.9 0.9 0.9
RMS 0.010 |0.010 0.010
Momentum 0.3 0.4 0.5
Iteration 4436 7233 7445

0.9 0.9 0.9
0.010 |0.010 |0.010
0.7 0.8 0.9
4491 4456 | 9548

Table 8. ANN Parameter Sensitivity Analysis of Asheville Airport — Learning Rate

of .9, Variable Momentum

Iteration

10000

8000 1

Fixed Learning Rate vs Momentum

——— |teration
=== Momentum

Figure 8. Asheville Airport: Varying Iterations and Momentum Values for a Fixed

Learning Rate (.9)
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Learning rate | 0.3
RMS 0.010
Momentum 0.6
Iteration 4460

0.5 0.6 0.7 0.8 0.9
0.010 0.010 0.010 |0.010 |0.010
0.6 0.6 0.6 0.6 0.6
4218 4128 4165 4329 4207

Table 9. ANN Parameter Sensitivity Analysis of Asheville Airport Momentum of .6

Variable Learning Rate

9

Iteration

Fixed Momentum vs Learning rate

SHGNESIR I

—— lteration
- eaming Rate

Figure 9. Asheville Airport: Varying Iterations and Learning Rate Values for a

Fixed Momentum (.6)

As shown in the Table 8 and Table 9, the learning rate with 0.9 yielded the best

result with 0.6 momentum value. The learning rate with 0.4 yielded the best result with

0.6 momentum value in two experiments. After determining that, it was tested with

McClellan airport. The results can be found in Table 10.
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Learning rate | 0.9

RMS 0.4795
Momentum 0.6
Iteration 8938

Table 10. McClellan-Palomar Airport ANN Backpropogation Results

The results showed that 0.6 is an appropriate number for momentum. Although a
small (0.4) learning rate yielded best result, there is barely difference between two
learning rates based on RMS. Based on the above experimental results, it was
determined the best parameter values for momentum was 0.6, and for learning rate was
0.4 using the iteration size as a determining criteria. It is concluded that larger
momentum works best with smaller learning rate for the threshold ASMD vs. baseline
USGS error analysis being conducted.

4.9 The effect of hidden layer size and processing elements in the hidden layers

The literature shows that when the network has hidden layers, the results of
training might depend on the random weights. Therefore, as mentioned earlier in this
report, the initial network weights were set between —10 and 10 and then on-line training
was used for each case.

Having determined the momentum and learning rate, layer parameters in the
network were explored, including the number of hidden layers and number of processing
elements per layer. There is no theoretical limit on the number of hidden layers, but
some research has been done which indicates that a maximum of four hidden layers are

required to solve complex pattern recognition problems. Each layer should be fully
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connected to the succeeding layer. During learning, information is propagated back
through the network and used to update the connection weights.

In order to determine layer parameter combinations that performed well, the
iterations were fixed at a reasonable level of 35,000 and the lowest RMS value was used
as the measure of performance. To start this process, a second layer was added to the
network and the number of processing elements was increased.

Table 11 summarizes the testing results using Asheville airport data. Each hidden
layer was tried with various processing elements starting from 1 to 10. As shown in the
Table 11, the network that has more hidden layer with three processing elements yields
better result than a simple network with one hidden layer and one processing element in
the layer. The best (lowest RMS) network is highlighted in Table 11, which has two
hidden layers, with three processing elements in the first hidden layer and two processing

elements in the second hidden layer.

1 2™ RMS K& 2™ RMS
hidden | hidden hidden | hidden
layer layer layer layer
1 1 0.2780 4 3 0.2754
2 1 0.2776 4 4 0.2731
2 6 0.2722 5 5 0.2725
3 1 0.2803 6 1 0.2813
10 1 0.2757
3 3 0.2754 6 2 0.2766
3 4 0.2751 6 0.2750
3 5 0.2747 10 10 0.2762
Table 11. Backpropogation Processing elements-Asheville Airport
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RMS vs Hidden Layer

— 1st hidden layer
— 2nd hidden layer

Figure 10. RMS vs. Number of Processing Elements in Hidden 1% and 2™ Layers

From Table 11 it can be concluded that first hidden layer with large number of

processing elements does not yield good results. Therefore, from the above trials, it was

determined that three processing elements in the first hidden layer and two processing

elements in the second hidden layer produce the best observed results. This network

model with an optimized number of layers and processing elements was then validated

using Denver and McClellan Airports. The results showed a significant reduction in RMS

values. For example, McClellan Airport changed from 0.4793 shown in Table 10, to the

0.1793 RMS value shown in Table 12.

Based on the testing results, the following RMS results were achieved:

Airport

Asheville Airport

Denver Airport

McClellan Airport

RMS

0.2707

0.2191

0.1793

Table 12. Improved model RMS results
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4.10 Analysis, Results and Airport Data File Discussion

With the design of the Artificial Neural Network model accomplished, an analysis
and discussion of findings can begin. The first issue is an analysis of the viability of the
Backpropagation ANN for the given airport data. To address this, a comparison of this
network will be done with the Modular network investigated in Phase II. In Phase IIL, the
modeling analysis criteria was changed to address ASMD elevation not only above or
below the USGS elevation, but the ASMD error outside a tolerance of +30m of the
baseline USGS database. Figure 11 represents the RMS values using the data modeling
criteria of Phase II. Both the Modular Network and Backpropagation Network were

tested using this modeling criteria.

Asheville E McClellan ODenver ODelta
@ John Wayne Palm Springs B Scappose O Lake Havasu

Backprop Modular

Figure .11. ANN RMS Results with Phase II Error Pattern Criteria
Based on the Modular network results from Figure 11, it is concluded that the
Modular type of network model is more successful in recognizing the error pattern in

geographical databases where the error is classified as risky or not with the criteria of the
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ASMD elevation lower than the baseline USGS elevation. The network properly
classified 100 percent of the patterns, but some of the airports results had high RMS
values (e.g., Lake Havasu City), when compared to the other airports when the Modular
network is used. Lake Havasu has the highest average error for the prescribed ROI
(57.60 meters) that could be a factor in the high RMS.

The Backpropagation results from Figure 11, yielded high RMS values. It is
concluded that Backpropagation may not be capable of recognizing the pattern in the
error database when using the data modeling assumption of Phase II. In other words, it
might not be possible from the results to interpret efficiently whether the
Backpropagation network learned risky areas when these areas are defined as any ASMD
elevation merely exceeding the USGS elevation.

Figure 12 represents the RMS values using the data modeling assumptions

adopted in Phase III.

IAshevIIle B McClellan @Denver ODelta O John Wayne B Palm Springs B Scappoose B Lake Havasu

Backprop Modular

Figure .12. ANN RMS Results with Phase ITI Error Pattern Criteria
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From Figure 12, it can be concluded that Backpropagation is better able to recognize
the error pattern in the database using the data modeling assumptions of Phase III where
an error threshold of thirty meters is considered. The results show that Lake Havasu and
John Wayne Airport yield a little higher RMS values than the others. For the outputs
illustrated in Figure 12, a quick discussion of the input data is necessary. The input data
was just a random sample taken from the ROI of each airport shown. This detail could
have an influence on the results and this will be addressed later.

Before any conclusions are made with respect to the RMS of specific airports, it is
useful to analyze the data visually. This can help identify potential underlying factors
influencing ANN results. Since Denver International Airport (DEN) was introduced
earlier in section 4.4, illustrating the elements of the visualization component, this airport
will be discussed first. The 2-D representation of Figure 13 shows a 3600 square mile
area around DEN with areas of missing data. This missing data is of no consequence,
with the qualification that the summary of results is for the area covered by the data
represented by each airport file and not of a ROI with defined dimensions of 60 by 60
statute miles. The view of interest is that of the USGS standard with contour lines as
shown in Figure 13. A depiction of contour lines on the elevation view of USGS data
shows that terrain depicted around this airport is not greatly sloped. Utilizing a contour
interval of 100 meters, it can be seen that the airport is on a large plain at high altitude
with a gently rolling slol;e. This is an important characteristic influencing the

comparison of geographic data and the ANN viability.

31



Figure 13. 2-D USGS Visualization with Contours

The minimally sloped terrain lends to the capability of the neural network model. For
Denver International (DEN), the RMS was .2101. Using Denver International Airport
databases, a sample file of data was taken randomly from the ROI and processed to
discover how well the ANN mimicked the true output in categorizing geographic
positions above or below a designated threshold. For this process the data was coded
binary with ones and zeros representing dangerous (>30m error) or safe (<=30m error)

positions. Figure 14 is a visual representation of the ANN sample file.
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ANN Sample File Output for DEN

Figure 14. Visual Representation of DEN Sample file ANN Output

Prediction for DE Color Input

I

0

Expected Output Legend

Color Output
I | 0.9 - 1.0003
B 7509
EEEE | 25- 75
: 0.1-.25
1| -0004-0.1

Figure 15. ANN Output v. Expected Output ANN Output Legend

Figure 15 is a visual representation of the sample file ANN output when viewed with the

desired output. Figure 15 contains two bands in a zoomed view of the sample file. The
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upper band is the expected output and the lower band is the ANN output. The legend

displays the coded output of values <=30m, coded 0, as white and the values >30m,

coded 1, in black. The ANN output is presented in a grayscale.

Figure 16 is a graphical representation of the ANN output from the sample file for

DEN.
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Figure 16. Graphical Representation of ANN Output

The visual display and graph shows the ANN output was essentially zero on the low side

and one on the high side. These are the values for which the ANN was designed. The

ANN correctly mimicked the desired output and performed as expected.
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For the eight airports illustrated in Figure 12, the ANN correctly distinguished between
safe elevation points and dangerous elevation points every time. This was not always
correctly identified with a classification of one or zero. In some instances the
classification was on the order of .8 on the high side and .2 on the low side. Although the
classification was different, the distinction was absolute and the match of safe points to
the low value and dangerous points to the high value was exact. One correlation can be
seen in the RMS. With an RMS above .2101, the ANN output was .8 and 2. This is
illustrated by the Asheville Regional Airport (AVL) sample file. The complete sample
file for AVL with both the expected (coded) outputs and ANN outputs are shown in
Figures 17 and 18. The color scales for these figures are the same as previous ANN

displays.

Figure 17. AVL Sample File Expected Output
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Figure 18. AVL Sample File ANN Output

The grayscale output of Figure 18 shows the different classification of safe and
dangerous elevation points, in this case at about .2 and .8. It also illustrates the distinct
separation of values and the correlation of ANN output to expected output. This can also
be supported by a graphical representation similar to Figure 16 but with the data for
AVL.

Now there is an ANN output of safe and dangerous points, an RMS, and a link of
the terrain to the RMS. Also we have shown statistical metrics of mean error, standard
deviation of the error and percentage of dangerous points within a ROIL. There also are
many different aspects of the visualizations of the ROI. All of these elements will be
used to determine whether two separate samples of geographic data are essentially similar

within predetermined tolerances. Additionally these metrics will be used to draw some
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relationships between the geographic characteristics and associated errors between
databases.

A complete listing of pertinent results for all the airports studied is illustrated
next. The data will be broken down into two distinct groups. The first group represents
airports with data covering an area up to 60 by 60 statute miles. Again some of the ROI
had voids due to a lack of data but this is not a factor as explained previously. The
airport data files of this group were very large and time consuming to obtain and
manipulate for processing by the ANN. The ANN outputs for the airports of group 1
were for random samples taken from the complete data file. The second group of airports
is composed of data that covers only half the area as listed in the first group. The second
group was collected, as such, to enable the acquisition of a larger set of different airports

and also to allow the complete processing of the airport data file by an ANN.

Airport Mean (m) Standard Percentage | RMS ANN Output
Deviation of Danger Classes
Elevations
154 11.732 34.268 23.38 3557 0.8,0.2
AVL 39.771 39.405 48.67 2707 0.8,0.2
CRQ 30.069 34.889 39.75 1793 1,0
DEN 6.34 10.36 2.73 2101 1,0
DTA 16.313 28.342 16.07 3531 0.8,0.2
HII 23.514 32.489 25.23 4598 0.8,0.2
PSP 57.608 50.920 64.30 3548 0.8,0.2
SNA 23.963 35.272 30.43 4445 0.8,0.2

Table 13 Group One Summary of Metrics
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Airport Count of Qualitative Visual Description Visual
Elevation Representation
Postings
1S4 46051 Elevation from 0-1363m. One mountain | Appendix 1&
with possible river btwn rough terrain. Appendix 4
AVL 44499 Elevation from 91-2039m. 2 mtns and Appendix 1&
dominated by rough terrain. Appendix 4
CRQ 34577 Elevation from sea level to 1873m. Appendix 1&
Coastal. One isolated mountain Appendix 4
DEN 39398 Elevation from 1357-2283m. Light slope | Figs. 2,3.4,5,
to beginnings of mountain area. 13&
Appendix 4
DTA 42819 Elevation from 1380-3083m. Flatuptoa | Appendix 1&
mountain ridge. Appendix 4
HII 45174 Elevation from 108-2317m. About 5 Appendix 1&
scattered mtns. Valleys in between. Appendix 4
PSP 46062 Elevation from —70 to 3506m. Two Appendix 1&
mountain ridges with a valley between. Appendix 4
SNA 30273 Elevation from sea level to 1735m. Appendix 1&

Coastal. Steep climb to mountain ridge.

Appendix 4

Table 14. Group One Summary of Metrics

38




Airport Mean (m) Standard Percentage | RMS ANN Output
Deviation of Danger Classes
Elevations
48V 13.28 26.86 13.91 3521 0.8,0.2
ASE 91.90 54.89 89.63 7627 0.8,0.2
COS 19.44 29.29 17.41 3810 0.8,0.2
EGE 65.25 45.29 76.84 7094 0.8,0.2
JAC 70.73 56.35 75.14 7012 0.8,0.2
LGU 40.20 45.59 44.11 5534 0.8,0.2
MSO 65.58 48.15 73.11 6931 0.8,0.2
SLC 57.59 54.41 51.16 .5899 0.8,0.2
FLG 25.20 77.04 25.53 4430 0.8,0.2

Table 1S. Group Two Summary of Metrics
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Airport Count of Qualitative Visual Description Visual
Elevation Representation
Postings

48V 22443 Elevation from1426-2980m. Flat to gradual | Appendix 4
slope up to steep mountain ridge

ASE 22246 Elevation from 1950-4340m. Most Appendix 4
elevation >3000m. Dominated by mtns.

COS 22317 Elevation from 1531-3771m. Flat terrain to | Appendix 4
high mountain range.

EGE 22201 Elevation from1855-3730m. Very rough Appendix 4
mountains of varying degrees of slope.

JAC 22956 Elevation from 1778-4199m. Rough and Appendix 4
mountainous.

LGU 22240 Elevation from 1283-3038m. Rough and Appendix 4
mountainous around a plateau.

MSO 22373 Elevation from 851-2792m. Rough and Appendix 4
mountainous.

SLC 16827 Elevation from 1280-3501m. Half flat due | Appendix 4
to lake progressing to steep mountain range.

FLG 41131 Elevation from996-4399m. One high Appendix 4

mountain. Few other rough areas.

Table 16. Group Two Summary of Metrics
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As Denver International has been introduced in previous discussions first, we’ll start
with it here. Statistical analysis, in Table 7, shows that only 1074 of 39398 points in the
ASMD are dangerous when compared to the USGS data. Ninety-seven percent of the
ASMD longitude, latitude, elevation triples are within a +30 meter tolerance. Also
exhibited in Table 6, the average ASMD error of the compared elevations is only 6
meters and the standard deviation is only 10 meters. Examining visualizations, Figure 3
is a 2-D view of USGS longitude, latitude, elevation triples overlaid with ASMD error
values. Only a small number of errors above our threshold are shown. The error values
within £30 meters are displayed as transparent to demonstrate good areas of elevation
values. Additionally, the points outside of the —30m error value are plotted and these are
easily evident in this perspective. Figure 4 shows a 3-D TIN of the error between the
ASMD and the USGS database. When the data is presented as a TIN the areas of missing
data from previous views are masked. These just need to be remembered but they don’t
affect the analysis and as shown can be worked around with differing views. The
dominance of the light blue shading throughout supports the conclusion of low error
between the ASMD and USGS. The ANN output is absolute between the dangerous and
safe elevation values, classifies them as (1,0) and has a low RMS of .2101. The criteria
for an acceptable match between the two databases is outlined as mean error <30m, error
standard deviation <18m and dangerous elevation coverage <10%. ANN support is
offered by a low RMS, an absolute distinction between dangerous and safe values and
classification of these values at 1 and 0. The data for DEN positively supports that the

ASMD for this airport is a safe representation of actual conditions within the prescribed
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tolerance. Denver International airport is the only accepted match between the ASMD
and USGS when verified by all methods employed.

Also with respect to the RMS from Figure 13 and Figure 51, a correlation can be
shown between the slope of the terrain and the elevation errors. A low RMS is linked to
the large space between the contour lines and the sparseness of red shading in the
visualization.

The rest of the discussion will illustrate characteristics or factors that would support a
rejection of the match between the ASMD and USGS data for each airport. The next
airport of interest is McClellan-Palomar (CRQ). It stands out as a candidate for a match
because the ANN model correctly classified the safe and dangerous values, predicted
them at 1,0 and the RMS for the model was low. This alone is not enough to accept the
ASMD data. All the other metrics for this airport are above acceptance criteria.. An
explanation can be found in the visualization of Figure 50 and the qualitative description
in Table 14 of McClellan-Palomar. Depicted is an area moderately sloped with an
isolated mountain. Remember that CRQ is from the Group 1 airports where the ANN
model was tested on a random sample of the data in the ROI. This just happens to be a
case where the random sample was not representative. The sample data covers a good-
sized area but just a small portion of it contains that representative of the isolated
mountain where the terrain is steeply sloped. It has been concluded and supported that
the RMS is greatly affected by sloping terrain. The lack of inclusion of it in the ANN
model for this airport influenced the unsupportive ANN output. This issue will be dealt
with later with the Group 2 airports when the ANN model will process the entire ROL

This factor just surfaced on this individual airport and doesn’t seem to be a factor on the
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other 7 airports in Group 1. The visualization aspect was a strong tool when the
disagreement between the ANN output and the statistical output was evident. Utilizing
the acceptance criteria listed, none of the rest of the airports in Group 1 can be considered
a match between the ASMD and USGS data. ??

The rest of the discussion will focus on the Group 2 airports. These airports are much
more representative of terrain impacted areas and contain more slope/steepness and
general surface roughness. An obvious characteristic of all these airports’ results is that
the ANN RMS’ are all above .3500 and none of the outputs could be classified to the
design criteria with dangerous and safe values of 1 and 0. However, the ANN model did
correctly and absolutely distinguish safe and dangerous elevations. The model has been
successful and unfailing here. A look at the graphics in Appendix 4 supports the fact that
the RMS of the ANN is related to the steepness of the terrain. The magnitude of the
RMS coincides with the slope of the terrain and with its coverage. The significance of
the ANN’s ability to illustrate the measure of slope and the elevation errors related to the
sloping topography is important in concluding or rejecting a match between terrain
databases. Without this insight a possible errant determination could be made. For
instance two possible examples where an inaccurate conclusion could be formed are
exhibited in Tri-County (48V) airport and City of Colorado Springs (COS) airport. If the
only metric utilized was that chosen in the preliminary research, you would be led to
believe that for these two airports the ASMD and USGS are similar. The output of the
ANN contradicts this assumption and further evidence is gained from the visual
representations in Appendix 4. The areas are dominated by a flat or gradually sloping

landscape and then move to a prominent steep mountain range. These mountain ranges
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have a noteworthy amount of error associated with them and their disregard is perilous.
So far we have discussed a good match of databases and some questionable and
inconsistent evidence. A solid illustration of a bad match is Aspen-Pitkin County/Sardy
field (ASE). The ANN distinguished between safe and dangerous values but had a very
high RMS and the predicted output was in the neighborhood of .2 and .8. This would
lead to a rejection of matching databases. This is further enhanced by the statistics and
the visualization of a predominantly red ROI indicating error greater than the threshold
over a large portion of the data that is representative of very rough and sloping
mountainous terrain.

To cover a more complete spectrum in this research, included in the Group 2 airports
is a ROI of 60 by 60 statute miles that was processed with the valid ANN model.
Flagstaff-Pulliam (FLG) airport was the experiment. The RMS of the ANN suggests that
the databases don’t match. From this number it may be hypothesized that there are some
features with elevation error related to sharp sloping topography. The area covered by
the ROI is not completely rough or mountainous but does have some elements of
moderate slope and not vast areas of flat or gradual landscape. It may not be hazardous
terrain throughout but there are prominent features that elevate the danger factor for this
area.

This airport illustrates an added benefit and a byproduct of the research. A look at the
statistics shows a very high standard deviation for the errors. Also a histogram of the
data shows a decent number of very large outliers. A two-dimensional and three-

dimensional view of the error shows a huge error in a distinct area of the ROI. This was
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explored and a discrepancy was found in the USGS elevation data. This instance was not
just specific to FLG and some irregularities were discovered in CRQ and AVL.

Additionally the visualization aspect can be used to support the research of Phase 11
Visualizations can be constructed illustrating actual USGS elevations overlaid on the
ASMD elevations (e.g., Fig 5). The intent of such a graphic is to show where the ASMD
elevations are greater than the USGS elevations. Red tinted areas can show USGS
elevations greater than ASMD elevations and are classified as risky. This does not by
itself identify the airport ROI out of a +30m tolerance as investigated in Phase III, but it
can give insight into the ASMD being within a threshold. If the area is predominantly
colored with the terrain elevation color scale then the ASMD error will be negative and
obviously under a positive threshold. The fact that a predominantly red shaded graphic is
not indicative of a bad ASMD to USGS comparison is illustrated well by the analysis of
DEN (Fig. 5) which is mostly red, but the data shows 97% of the points are under the +30
threshold and the mean ASMD error is only 6 meters.

5.Conclusions

Artificial neural networks have arisen from analogies with models of the way that
human might approach pattern recognition tasks, although they have developed a long
way from the biological roots. Great claims have been made for these procedures, and
although few of these claims have withstood careful scrutiny, neural network methods
have had great impact on pattern recognition practice. A theoretical understanding of how
they work is still under construction. (Ripley, 1995).

Artificial neural networks proved viable in pattern recognition in terrain databases.

The ANN models investigated were able to discern areas of acceptable data and areas of
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unacceptable hazardous data. Additionally, they were able to classify error between two
similar databases as safe or dangerous with respect to a chosen criteria or error threshold.
The strength of the classification seemed to be linked to certain aspects of the terrain.

The ability of the ANN to offer this underlying indication was noteworthy. This
indicator brought light to weaknesses of other methods and metrics used in comparison of
terrain data. A substantial enhancement to the use of ANNs was a visualization aspect. It
complimented the results of the ANN output and allowed the discovery of a link between
the strength of the ANN classification and the degree of slope within the chosen area of
interest. Furthermore, the visualizations also added support to the criticism of statistical
metrics. An elevated predominantly flat terrain with either an isolated mountain or a
ridgeline covering a minor percentage of the area of interest could give a low average
error for a relatively large area. The steep mountainous area, although not dominant, is
significant. The large number of low errors offset the small concentration of large errors
outputting a low average that could mask the hazard area and lead to the belief that the
two databases are similar within tolerances. A picture of the errors reveals the large
concentration of high errors that are very dangerous in their part of the area of interest.
The ANN also alluded to this with its output of an RMS value greater than .2 and an
inability to classify points at absolute values of zero or one.

There is a considerable overlap between the fields of neural networks and statistics.
While neural networks are often defined in terms their algorithms or implementations,
statistical models are usually defined in terms of their results. There are many ideas in
research literature in order to explain why to use ANNSs rather than any of the statistical

methods. Depending on the answer sought, some popular ANN models is useful in the
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same situation as a regression, where: the number of inputs is fairly large, many of inputs
are relevant, but most of the predictive information lies in a low-dimensional subspace.
Other findings exhibited in the research investigation pertain to data density reduction
and sampling of the region of interest. In one instance a random sample from the ROI
was not a true indicator of the entire ROL The random sample was not representative
and gave false results. Itis imperative that the sample be representative. The random
choice of points may exclude major terrain features that are a threat to aircraft safety.
The data density was dictated by the ASMD. This was not nearly as good as the 10 m
spacing or even the 30 m spacing of the USGS. This could have been a factor in many
of the mismatches. An added benefit of the visualization aspect of the research is the
discovery of outliers and error in the underlying data used as the standard. This was
demonstrated in isolated areas in 4 of the examined airports.
6.Further Research and Discussions
Using 17 sets of airport data that aids visualization, our results may help to explain if
the data is suitable to use for cockpit simulation on particular airports. As mentioned
earlier, some of the airports yielded high RMS results.

The sample size and sampling areas are also other factors that might influence on
the results. A research question that can be further explored is whether training and
testing sets should be chosen by randomly or by some systematic algorithm. Those two
factors can be explored for the further research. Ifit is then we go back the question “.
Does training and testing sets should be chosen by randomly or by some systematic
algorithm? and suggest some further research on it. Incorporation of ANN in a larger

database accuracy methodology.

47



A larger research question deals with the use of ANN for a more comprehensive
role in terrain database correlation analysis methodologies. In this project, ANN models
did show promise for simulating aggregate statistical analyses, which are part of an
overall assessment of database correlation. Of even greater importance is the role the
human analyst provides in terrain database correlation judgments, which deal with the
cognitive synthesis of statistical measures, as well as analyzing comparative
visualizations of aggregate and local database areas. By capturing such analyst
processes, and feeding such human database pattern recognition changes and conclusions
into ANN models, assessments can be made of ANN for a role in helping to higher-level

cognitive recommendations to analysts, based on previous similar analysis procedures.
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Appendix 1.

Data acquisition of United States Geologic Survey (USGS) 7.5° Digital Elevation
Model (DEM) data.

A checklist has been developed for the construction of 3 region of interest around a

desired airport of geographic point pairs of elevation values from United States Geologic

Survey (USGS) data and Airport Safety Modeling Data (ASMD).

Data Acquisition

1.
2.
3.

Airport Selection
Airport Reference Point

Determination of Region of Interest (ROI) and calculation of edge boundaries for
ROI

. Determination of central DEM and county in which airport is located

4
5. Production of 3 template of inclusive USGS DEMS
6.
7
8
9

Download of data from the web

- Determination of other counties represented in DEM template, if necessary
- Review associated TXT files of downloaded DEM
- Unzip files of each DEM

10. Merge Compatible 1:24000 7.5 DEM utilizing MICRODEM o
11. View merged DEMs for quality assurance

12. Export merged DEM into files of Xyz triples

13. Merge and format conversion of xyz triples into a size and format useable within

Visual Basic © data point matching and error computation program.

14. Import output of Visual Basic © program into Excel © for statistical analysis
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Amplifying information for each checklist jtem above follows:

1. Chosen from the list of ASMD airports contained in the US_INDEX file of
the original data.
2. Located in the header of the ASMD airport data file,

calculated if other than 30 nm. The determination of the edge boundaries does
not have to be exact but must be large enough to contain the entire ROI. This
can also be estimated in the completion of step 5.

4. This information can be found through the web site-

hitp://edewww cr.usgs. ov/Webglis/ lisbin/finder map. [?7dataset_name=MA

5. This is accomplished through the following web site-
hitp://geonames.usgs. sov/pis/ nis/web_que .gnis_web_query_form.
Construct a template similar to that of F igure 1 until all DEMs have been
filled in to cover the area depicted by the ROL

6. This is completed through the web site-
WWW.gisdatadepot.com/dem/demdownioad.htmi. The free data are the
1:24,000 7.5’ DEMs in SDTS format. They are in either 10m or 30m spacing.

Download time for 10m spacing is much greater than that for 30m, i.e. 15
minutes vice 2 minutes with a broadband connection. Also, download the
accompanying .txt file.

7. In the construction of the tiled ROL, oftentimes the area covers multiple
counties and possibly other states. If you exhaust the DEMs in one county
you must return to the website listed in step 4 to discover the other counties
required. If a state border is crossed that information can be seen on the map
view of the website listed in step 5.

8. Areview of the .txt file for each downloaded DEM:s is necessary to find out
certain information necessary for successful merging later. ftems of
importance are spacing of 10m or 30m; z value in ft or meters; UTM zone;

Data level 1 or 2; Vertical datum and Horizonta] datum.
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9.

10.

11.

12.

Procedures for Unzip of the .tar.gz files are given in a tutorial on the web link

Jon )
3
)

p://sdts.er.usgs. g@g@gﬁmmcfes/@sc_iﬁé?s_‘zuwféa3.*ZX*: Although the
website for DEM download has been changed since the production of this
tutorial in 1998, it offers pertinent information related to versions of WINZIP
When unzipped, 19 files will be extracted. The actual data is contained in the
file with the ####celo.ddf extension.
MICRODEM © ver 5.1 rev12/1 172001 and ver 5.12 rev 1/7/2002 was used to
convert the SDTS format to a MICRODEM format and then to XYZ triples of
longitude, latitude, elevation. The data manipulation meny was used with the
features of merge and export being the primary functions. The data obtained
from the USGS DEM .txt file is necessary here to get a successful merge. The
merged DEMs must be in the same UTM zone. Datum transformation and
geographic coordinates are accomplished automatically by MICRODEM to
that set in the options tab. All the baseline parameters should be set prior to
entering the data manipulation meny. Some versions of MICRODEM
automatically convert the different z values of feet and meters to all meters.
In this project only DEMs of similar spacing, UTM, z, horizontal and vertical
datum were merged together. Some DEMs were just merged individually for
format conversion. Also, with 10m spacing a limited number of DEMs were
merged to keep the files to a workable size after export. Too many 10m
DEMs significantly impacted processing time both in MICRODEM and in
follow on applications.
In MICRODEM, each merged DEM was viewed to ensure a good product
before continuing to the follow on export and other processing. The next
steps are time consuming and a good product here eliminates lengthy rework.
Export of the DEM:s into XYZ triples of longitude, latitude, elevation in
meters. Often the entire ROI of DEMs could not be exported in one file. It
was either too large or had differing parameters as listed in the descriptive text
files. When necessary the DEMs were merged and exported by rows. The
convention with the lower left corner being the starting point was followed in

naming files and building the entire ROL.
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13. Two computer programs developed in prior research were used in this step. A
Demmerge program is used to consolidate the output XYZ triples files of
MICRODEM. This was necessary for those DEMs with differing descriptive
information before the merge and export but now all data is of the same
format after the export. Also the Demmerge program reformats the data to
that required for the next process. Again, it should be noted that the 10 m
spacing has an impact on processing time. Also, the size of a merged file
could outgrow that capable by the next computer application. Parameters wil]
go out of bounds. The Demmerge program gives an indication of the number
of points in the file. Typical size ranges from 4 to 7 million points. 10
million is the limit. When an ROI exceeds 10 million points the next process
is just repeated until all the individual pieces of an ROI for a single airport are
finished. For a 30 mile ROJ with many 10 m DEMs the Demmerge and
follow on processing is very lengthy. With a computer with an average speed
processor it could take a few days running continuously to complete a single
ROI After the Demmerge program, the next process is pair- wise geographic
location matching of elevations from the USGS database and the ASMD
database. This program was also developed in prior research. It was modified
slightly because of a newer version of MICRODEM. The need for a datum
transformation no longer exists with that capability added to MICRODEM.
Also some features still in development in the previous research were
remarked out to increase processing time.

14, The final step is just import of the raw data output from the Visual Basic
programs into Excel spreadsheets for further analysis and use by follow on

applications. A sample of the final product is shown below:

LAKE HAVASU CITY
ASMD ROI average elevation is 507.9962013
Counter asmdlat asmdlong asmdelev asmderrorusgselev USGS posts
1 341792 114.8017 630 94 724 302
2 34.1833 114.8017 758 46 804 300
3 342 114.8017 822 28 850 282
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Appendix 2

Select Visualizations for Sample Airports

1S4 SCAPPOOSE INDUSTRIAL AIRPARK
AVL ASHEVILLE REGIONAL
CRQ MC CLELLAN-PALOMAR
DTA DELTA MUNI
HII LAKE HAVASU CITY
PSP PALM SPRINGS REGIONAL

SNA  JOHN WAYNE AIRPORT-ORANGE COUNTY
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1S4 SCAPPOOSE INDUSTRIAL AIRPARK

Color

Elevation (m)

1205-1356

1055-1205

904-1055
753-904
603-753
452-603
301-452
151-301

0-151

2-Dimensional Representation of 1S4 from ASMD

3-Dimensional TIN of 1S4 from ASMD

Figure 20. Visualizations of 1S4 from ASMD
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2-D view of ASMD Error v. USGS Elevation

Color Elevation (m) Color Elevation (m)
I 1212-1363 iseustianealaon] 150-744
B 1060-1212 50-150
By 909-1060 30-50

757-909 1| -30-30%
606-757 -43 - 30
454-606
303-454 *This color band is transparent to so that
151-303 values within limits show through.

0-151

Figure 21. Visualizations of 1S4 from USGS Data and ASMD Error
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3-D TIN of ASMD Error

Elevation (m)

Figure 22 Visualizations of 154 from ASMD Error Data
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AVL ASHEVILLE REGIONAL

Color

Elevation (m)

L 1

1821-2018
1624-1821
1427-1624
1230-1427
1033-1230
836-1033
639-836
442-639
245-442

2-Dimensional Representation of AVL from ASMD

Figure 23.Visualizations of AVL from ASMD
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2-D view of ASMD Error v. USGS Elevation

Color Elevation (m) Color Elevation (m)
I 1823-2039 BN | 150272
1| 1606-1823 50-150
B | 1390-1606 30-50
BN | 1173-1390 C—1| -30-30%

957-1173 -266 - -30
740-957
E s 524-740 *This color band is transparent to so that
s 307-524 values within limits show through.
IR 91-307

Figure 24. Visualizations of AVL from USGS Data and ASMD Error
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3-D TIN of ASMD Error

Color

Elevation (m)

150-274
50-150
30-50
-30-30

-266 - -30

Figure 25 Visualizations of AVL from ASMD Error Data
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3-D TIN of USGS Elevation overlaid ASMD Elevation

F Color Elevation (m) |

1821-2018
1624-1821
1427-1624
1230-1427

T | 1033-1230
[ | 8361033

639-836
442-639
245-442

ASMD Elevation Legend

Color | Elevation (m)

1823-2039
1606-1823
1390-1606
1173-1390
EErTa 957-1173
[ 740-957
— 524-740

307-524

91-307

USGS Elevation Legend

Figure 26.Visualizations of AVL from ASMD and USGS Data
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CRQ MC CLELLAN-PALOMAR

Color Elevation (m)
L 1 1641-1846
B 1436-1641
ey 1231-1436
B | 1026-1231

820-1026
615-820
410-615
205-410
0-205
2-Dimensional Representation of CRQ from ASMD

3-Dimensional TIN of CRQ from ASMD

Figure 27.Visualizations of CRQ from ASMD
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2-D view of ASMD Error v. USGS Elevation

Color Elevation (m) Color Elevation (m)
I 1665-1873 B | 150-608
0 | 1457-1665 50-150
T 1249-1457 30-50
e 1041-1249 1| -30-30*

832-1041 -154 - -30
624-832 * This color band is transparent to so that values
H6-624 | ithin limits show through,
BT 208-416
G ) 0-208

Figure 28. Visualizations of CRQ from USGS Data and ASMD Error



3-D TIN of ASMD Error

Color Elevation (m)

150-608
50-150
30-50
-30-30
-154 - -30

Figure 29.Visualizations of CRQ from ASMD Error Data
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3-D TIN of ASMD Error

Elevation (m)

150-608
50-150
30-50
-30-30

-154 - -30

Figure 30.Visualizations of CRQ from ASMD Error Data
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3.D TIN of USGS Elevation overlaid ASMD Elevation

Color

Elevation (m)

1641-1846
1436-1641
1231-1436
1026-1231
820-1026
615-820
410-615
205-410
0-205

Color

Elevation (m)

1665-1873
1457-1665
1249-1457
1041-1249
832-1041
624-832
416-624
208-416
0-208

ASMD Elevation Legend

Figure 31.Visualizations of CRQ from ASMD and USGS Data

USGS Elevation Legend
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DTA DELTA MUNI

Color Elevation (m)
L 1 2864-3050
B 2678-2864
EEETE 2492-2678
BT 2306-2492

2119-2306
1933-2119
1747-1933
1561-1747
1375-1561

2-Dimensional Representation of DTA from ASMD

3-Dimensional TIN of DTA from ASMD

Figure 32.Visualizations of DTA from ASMD
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2-D View of ASMD Error v. USGS Elevation

Color Elevation (m) Color Elevation (m)
l ] 2894-3083 B | 150-342
1 | 2705-28%4 50-150
EEEE 2515-2705 T 30-50
T 2326-2515 1 -30 - 30*
2137-2326 -49 - 30
1948-2137

1758-1948 * This color band is transparent to so that
1569-1758 values within limits show through.

1380-1569

Figure 33.Visualizations of DTA from USGS Data and ASMD Error



3-D TIN of ASMD Error

Color

Elevation (m)

150-342
50-150
30-50
-30-30*
-49 - -30

Figure 34.Visualizations of DTA from ASMD Error Data
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3-D TIN of USGS Elevation overlaid ASMD Elevation

Color Elevation (m)

L 1 2864-3050

1| 26782864
BN | 2492-2678

BN | 2306-2492
2119-2306

1933-2119
1747-1933
1561-1747
1375-1561

ASMD Elevation Legend

Figure 35.Visualizations of DTA from ASMD and USGS Data

Color

Elevation (m)

2894-3083
2705-2894
2515-2705
2326-2515
2137-2326
1948-2137
1758-1948
1569-1758
1380-1569

USGS Elevation Legend
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HII LAKE HAVASU CITY

Color Elevation (m)

2045-2286
1804-2045
1562-1804
1321-1562
1080-1321
839-1080
597-839
356-597
115-356 J

I
T
EOEETT
T

»_Dimensional Representation of HII from ASMD

3-Dimensional TIN of HII from ASMD

Figure 36.Visualizations of HII from ASMD
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S —
2-D view of ASMD Error v. USGS Elevatio

Color Elevation (m) Color Elevation (m)
| 2072-2317 s i 150-365
| 1826-2072 50-150
N | 1581-1826 S g 30-50
I | 1335-1581 ——| -30-30

1090-1335 -46- -30 J
844-1090
*This color band is transparent to so that
, — 599-844
values within limits show through.
T |
momErEm | 0

Figure 37.Visualizations of HII from USGS Data and ASMD Error
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3-D TIN of ASMD Error

Color

Elevation (m)

150-365
50-150
30-50
-30-30
-46 - -30

Figure 38.Visualizations of HII from ASMD Error Data
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3-D TIN of USGS Elevation overlaid ASMD Elevation

Color Elevation (m) Color Elevation (m)
2045-2286 2072-2317
1804-2045 1826-2072
1562-1804 1581-1826
1321-1562 1335-1581
1080-1321 1090-1335
839-1080 844-1090
597-839 599-844
356-597 353-599
115-356 s 108-353
ASMD Elevation Legend USGS Elevation Legend

Figure 39.Visualizations of HII from ASMD and USGS Data



PSP PALM SPRINGS REGIONAL

Elevation (m)

3057-3448
2666-3057
2276-2666
1885-2276
1494-1885
1103-1494
713-1103
322-713
-69-322

2-Dimensional Representation of PSP from ASMD

Figure 40.Visualizations of PSP from ASMD
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2-D view of ASMD Error v. USGS Elevation

Color Elevation (m) Color Elevation (m)
I 3109-3506 BT 150357
Exmmrm | 27113109 50-150
B | 23142711 30-50

1917-2314 1| -30-30%
1519-1917 -127 - =30
1122-1519
725-1122
327-725 *This color band is transparent to so that
-70-327 values within limits show through.

Figure 41 Visualizations of PSP from USGS Data and ASMD Error
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3-D TIN of ASMD Error

Color

Elevation (m)

150-357
50-150
30-50
-30-30
-127 - -30

Figure 42 Visualizations of PSP from ASMD Error Data
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3-D TIN of USGS Elevation overlaid ASMD Elevation

Color Elevation (m) ’- Color Elevation (m)

3057-3448 3109-3506

2666-3057 2711-3109

2276-2666 2314-2711

1885-2276 1917-2314

1494-1885 B | 1519-1917

B 1103-1494 B 1122-1519
713-1103 ] 725-1122
— 322-713 ———— | 327725
L— 69-322 B I 70-327
ASMD Elevation Legend USGS Elevation Legend

Figure 43. Visualizations of PSP from ASMD and USGS Data
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SNA JOHN WAYNE AIRPORT-ORANGE COUNTY

Color Elevation (m)
L 1 1541-1734
BT 1349-1541
B 1156-1349
T 993-1156
771-993
578-771
385-578 .
193-385
0-193

2-Dimensional Representation of SNA from ASMD

3-Dimensional TIN of SNA from ASMD

Figure 44.Visualizations of SNA from ASMD
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2-D View of ASMD Error v. USGS Elevation

[ Color Elevation (m) [ Color Elevation (m) |
[ ] 1542-1735 BN | 150243
1349-1542 50-150
1157-1349 30-50
964-1157 | -30-30%
771-964 -119--30
578-771 -
386-578 *This color band is transparent to so that
193-386 values within limits show through.
0-193

Figure 45 Visualizations of SNA from USGS Data and ASMD Error
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3-D TIN of ASMD Error

Color Elevation (m)

150-248
50-150
30-50
-30-30
-119--30

Figure 46.Visualizations of SNA from ASMD Error Data
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3-D TIN of USGS Elevation overlaid ASMD Elevation

Color Elevation (m) Color Elevation (m)
L 1 1541-1734 1542-1735
1| 1349-1541 1349-1542
N | 1156-1349 1157-1349
EaTE 993-1156 964-1157

771-993 771-964
578-771 578-771
385-578 386-578
193-385 193-386
0-193 0-193
ASMD Elevation Legend USGS Elevation Legend

Figure 47 Visualizations of SNA from ASMD and USGS Data

84



Appendix 3

Select Statistical Output for Sample Airports

1S4 SCAPPOOSE INDUSTRIAL AIRPARK
AVL ASHEVILLE REGIONAL

CRQ MC CLELLAN-PALOMAR

DTA DELTA MUNI

HII' LAKE HAVASU CITY

PSP PALM SPRINGS REGIONAL

SNA JOHN WAYNE AIRPORT-ORANGE COUNTY
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1S4 SCAPPOOSE INDUSTRIAL AIRPARK

Bin

Frequency

=72
-31.2
9.6
50.4
91.2
132
172.8
213.6
254 .4
295.2
336
376.8
417.6
458 4
499.2
540
580.8
621.6
662.4
703.2
744
More

1
3490
21360
15997
4058
913
174

~
)

Fre

quency

Histogram

25000

20000

5000

10000

5000

-72

96
912
1728
2544

4176
4992

Bin

B Frequenc

5808
662 4

744

SN O OCOCOOCOCDCO OO

Mean Error

11.732167

Median

6

Mode

-7

Standard
Deviation

34.267535

Sample
Variance

1174.2639

Range

816

Minimum

=72

Maximum

744

Count

46051

# Safe values

35285

# Danger values

10766

Total

46051

% Safe

76.62%

% Dangerous

23.38%
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AVL ASHEVILLE REGIONAL

Bin Frequency
266 P Histogram
239 20
-212 26 18000
-185 9
-158 0 16000
-131 0 14000
-104 0
77 0 > 12000
-50 3 S 10000
23 49 3
4 6647 e 8000
31 16467 L 5000
58 8934
85 6241 4000
112 3721 2000
139 1592
166 558 0
193 176 8 & B83IJ¥YRNEgL X
220 44 AT T N g TS N
247 5
274 5
More
Mean Error 39.7714106 # Safe values 22841
Median 29 # Danger values 21658
Mode 6 Total 44499
Standard
Deviation 39.4052989 % Safe 51.33%
\S/a:;llla)lllece 1552.77758 % Dangerous 48.67%
Range 540
Minimum -266
Maximum 274
Count 44499
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CRQ MC CLELLAN-PALOMAR

Bin Frequency

-154 1 Histogram

-115.9 11 25000

<778 21

-39.7 178

-1.6 2071 20000

36.5 20771

74.6 7958 -

112.7 2511 £15000

150.8 773 @

188.9 210 &

227 60 210000

265.1 8

303.2 1

341.3 1 5000

379.4 0

417.5 0

455.6 0 0 4

4937 0 ’Q‘OO(O(DOOI‘“-—NV(OOOOO
531.8 0 L\‘—?ETESQSQBECOO
569.9 0 ' =~ . M T WD
608 2 Bin
More 0
Mean Error 30.0694392 # Safe values 20834
Median 22 # Danger
Mode 0 values 13743
Standard Total 34577
Deviation 34.8891955
Sample % Safe 60.25%
Variance 1217.25597 % Dangerous 3975%
Range 762
Minimum -154
Maximum 608
Count 34577




DTA DELTA MUNI

Bin__Frequency
49 1 Histogram
-29.45 26 25000 —
9.9 614 -
9.65 23809 .
292 11265 20000 + o
48.75 2933 - ;
68.3 1560 - -
87.85 919 215000
107.4 673 o »
126.95 427 o
146.5 289 510000
166.05 162
185.6 81
205.15 34 5000 -
2247 10
24425 10
263.8 3 0 -
283.35 2 Q2N M T DO~ 0o N
302.9 0 Te28598329 3
322.45 0 T N N®
342 1 Bin
More 0
Mean Error 16.312945 # Safe values 35939
Median 7 # Danger values 63880
Mode 1 Total 42819
Standard
Deviation 28341519 % Safe 83.93%,
Sample o o
Variapnce 803.24169 % Dangerous 16.07%
Range 391
Minimum -49
Maximum 342
Count 42819

89



HII LAKE HAVASU CITY

Bin Frequency
-46 1 Histogram
-25.45 15 25000 +——
-4.9 2080
1565 23451
36.2 10049 20000 +
56.75 3963 Frequency
773 2418
97.85 1344 215000 +
118.4 816 c
138.95 452 §_
159.5 233
180.05 151 :‘:10000
200.6 98
221.15 42
241.7 25 5000 +
262.25 14
282.8 10
303.35 4 0 - e e L e
323.9 5 © @9~ o oo
344.45 0 Al 238 T &8 &
365 3 Bify &N N m
More 0
Mean Error 23.5138575 # Safe values 33775
Median 13 # Danger
Mode 0 values 11399
Standard Total 45174
Deviation 32.4888211
Sample % Safe 74.77%
Variance 1055.52349 % Dangerous 25.23%
Range 411
Minimum -46
Maximum 365
Count 451?‘
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PSP PALM SPRINGS REGIONAL

Bin _ Frequency

-127 1 Histogram
-102.8 12000

-78.6 25

-54.4 78 10000 -

-30.2 201

-6 1438

18.2 8428 8000

42.4 11373 a-

66.6 8169 ﬁunn ..t.

90.8 6089 =3 .

115 4270 §' ,

139.2 2541 L._DUU T

163.4 1590

187.6 862 2000 -

211.8 484

236 246 0 -

260.2 140 ~ O NN © W ¥ @~ © I~
284 4 69 Yo 0w w T o - o o &

' - oM ~— O o — D [}

308.6 33 ! | Bin — NN
332.8 13

357 7
More 0
Mean Error 57.6077244 # Safe values 16445
Median 47 # Danger
Mode 25 values 29617
Standard Total 46062
Deviation 50.9197299
Sample
Variance 2592.81889 9% Safe 35.70%
Range 484 % Dangerous 64.30%
Minimum -127
Maximum 357
Count 46062
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SNA JOHN WAYNE AIRPORT-ORANGE COUNTY

Bin  Frequency
-119 3 Histogram
-100.65 1 18000
-82.3 3
63.95 12 16000
-45.6 11
-27.25 59 14000
-8.9 443 12000
9.45 15631 5
27.8 4245 § 10000
46.15 3755
64.5 2376 g 8000
82.85 443 | % aa0p
101.2 873
119.55 542 4000
137.9 398
156.25 250 2000 +
174.6 116 0 .
192.95 7 DO DO N N O M
2113 19 T N W OW I~ e I~ — X
O O T N O s~ N
229.65 11 ! T i Bin= ~ —
248 5
More 0
Mean Error 23.9629042 # Safe values 21062
Median 7 # Danger
Mode 0 values 9211
Standard Total 30273
Deviation 35.2723403
Sample
Variance 1244.13799 o Safe 69.57%
Range 367 % Dangerous 30.43%
Minimum -119
Maximum 248
Count 30273
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154
AVL
CRQ
DEN
DTA
HII
PSP
SNA
438V
ASE
COS
EGE
JAC
LGU
MSO
SLC

FLG

Appendix 4

Contour and Error Representation Visualizations for All Sampled Airports

SCAPPOOSE INDUSTRIAL AIRPARK
ASHEVILLE REGIONAL

MC CLELLAN-PALOMAR

DENVER INTERNATIONAL AIRPORT
DELTA MUNI

LAKE HAVASU CITY

PALM SPRINGS REGIONAL

JOHN WAYNE AIRPORT-ORANGE COUNTY
TRI-COUNTY

ASPEN PITKIN

CITY OF COLORADO SPRINGS
EAGLE COUNTY

JACKSON HOLE

LOGAN CACHE

MISSOULA

SALT LAKE CITY

FLAGSTAFF PULLIAM
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Figure 48. SCAPPOOSE INDUSTRIAL AIRPARK Contour and Error Representation

Figure 50. MC CLELLAN-PALOMAR Contour and Error Representation
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Figure51. DENVER INTERNATIONAL AIRPORT Contour and Error Representation

Figure 53.LAKE HAVASU CITY Contour and Error Representation
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Figure 55.JOHN WAYNE AIRPORT-ORANGE COUNTY Contour and Error
Representation
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Figure 56. TRI-COUNTY Contour and Error Representation

Figure 57.ASPEN PITKIN Contour and Error Representation

Figure 58.CITY OF COLORADO SPRINGS Contour and Error Representation

97



Figure 59. EAGLE COUNTY Contour and Error Representation

Figure 61 LOGAN CACHE Contour and Error Representation
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Figure 62. MISSOULA Contour and Error Representation

Figure 63. SALT LAKE CITY Contour and Error Representation
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